历史

IV 常规科学即解难题(2/2)

新难题,而不是解决老难题。结果,直到175O年有一位科学家发现可以成功地应用牛顿定律时,科学家们才不再维护这些规则。②具有改变了博奕的规则才可能有另一种选择。

    ①关于这些实验发展的简要说明,见C.J.戴维逊(Davisson)在《1937年诺贝尔奖金》(斯德哥尔摩,1938年)的讲演,第4页。

    ②W·惠威尔(Wb6W0ll:《归纳科学史》(修订版;伦敦,1847年);第II卷,第101~105、220~222页。

    对常规科学传统的研究揭示了许多附加的规则,这些规则提供了许多关于科学家从规范得来成规的信息。关于这些规则所属的主要范畴,我们能说些什么呢?①最明显而且也许是最简要的例子,可以举出刚刚提到的那几种命题。那是对于科学定律以及有关科学概念、理论的明确说法。只要这些说法还受重视,它们就促进提出难题,限制认可的解法。例如,牛顿定律就在十八和十九世纪中完成了这些作用。在这样的期间,“物质的量”对于物理学家是基本的本体论范畴,而作用于两块物质之间的力则是主要研究课题。②在化学中,定比和倍比定律在很长时期中都有一种完全一样的力——它提出了原子量的问题,联接了化学分析中可用的结果,并告诉化学家们原子、分子、化合物、混合物是什么。③麦克斯韦方程和统计热力学定律今天也具有同样的力量和作用。

    但是象这样一些规则既不是仅有的,也不是历史研究中出现的最有意思的变形。在比定律和理论更低,或更具体的水平上,例如对于优先采用的仪器设备类型以及合理使用所用仪器的方式,都有许多规定。人们改变了对火在化学分解中作用的态度,对十七世纪化学的发展就起了重要作用。④在十九世纪,赫姆霍兹(HeImholtz)遇到了生理学家们对物理实验用以说明他们专业的观念的顽强抵制。⑤在本世纪,化学色层分离法的古怪历史又一次表明,有关仪器的规定也同定律和理论一样持久,也给科学家以博弃规则。⑥分析一下X射线的发现,我们就可以知道为什么会有这样一种成规。

    ①我应当把这个问题归功于W·O·哈格斯冲(Hasstrom)他对科学社会学的研究工作有时同我的工作有交叉。

    ②对牛顿主义的这几方面的问题,见

    I·B.柯亨(Cohen):《富兰克林和牛顿:探索牛顿的思辨的实验科学以及由此而来的富兰克林的电学研究之例》(费城,1956年),第vii章,特别是第255~257、275~277页。

    ③这个例子最后在接近第X节的末尾讨论过。

    ④H.迈兹热:《法国从十七世纪开始到十八世纪结束的化学原理》(巴黎,1923年),第359~361页;玛丽·波瓦(Marie

    Boas):《罗勃特·波义耳和十七世纪化学》(剑桥,1958年),第112~115页。

    ⑤留·康尼斯伯(Leo

    Konigsberger):《赫曼·冯·赫姆霍兹》,弗朗西斯·A·威耳贝(Francis

    A.Welby)译(牛津,1906年),第65~66页。

    ⑥詹姆士·E·门哈德(James

    inhard):《色层分离法:一个展望》,《科学》;第CX卷(1949年),第387~392页。

    历史研究有规则地显示了更高级的、准形而上学的成规,尽管它们还不就是科学永恒不变的特征,却也并不那么有局部性和暂时性。例如,大约在1630年以后,特别是在笛卡儿影响巨大的科学著作出现以后,绝大多数物理学家都认为宇宙是由微小的粒子所组成,一切自然现象都可以按照粒子的形状、大小、运动和相互作用来解释。形成各种成规的这个温床,证明既合乎形而上学,也合乎方法论。作为形而上学,它告诉科学家宇宙包含什么样的和不包含什么样的实体:宇宙之内只有运动中所形成的物质。作为方法论,它告诉科学家终极定律和基本说明一定怎么样:定律一定要阐明粒子的运动和相互作用,说明则一定要把一切已知的自然现象都归结为这些定律支配下的粒子的作用。更加重要的是,宇宙粒子概念告诉科学家应当研究许多什么样的问题。例如,一个象波义耳那样信奉新哲学的化学家,就特别注意可视为嬗变的反应。这些反应比其他任何反应更加清楚地显示了粒子重新排列的过程,这种过程必然构成一切化学变化的基础。①在研究力学、光学、热学时,也可以看到粒子论的同样效力。

    最后,在更高级水平上,另外还有一套成规,离开它任何人也成不了科学家。例如,科学家必须力求了解世界,提高使世界有秩序的精确性,并扩大这种秩序的范围。这样,这套成规又一定会反过来引导科学家要么自己、要么通过他的同事以极其细致的经验深入分析自然界的某一方面。如果这种分析表面上看来有混乱之处,那就一定要求他的观测技术更加精致,或者要求他的理论更加明确。无疑还有别的象这样的一直为科学家们所遵守的规则。

    存在这样一种成规的牢固框架——概念、理论、仪器以及方法论方面的成规——就会产生一种把常现科学同解决难题联系起来的隐喻。因为成规提供的规则告诉一门成熟专业的工作者世界是怎样的,他的科学又是怎样的,他就可以很自信地集中到这些规则和现有知识为他规定好的深奥问题上去。于是,他向自己提出的挑战就是;怎样对留下的难题给出一个解。就这样一些方面讨论难题和规则,正好说明了常现科学实践的本质。但另一方面,这种说明也可能完全误入歧途。在一定时期内把某一科学专业的所有工作者都结合在一起的规则。尽管,显然是有的,但这些规则本身并不能表明这里的专家们所有共同的实践。常规科学是—种高度确定的活动,但不需要完全由规则来确定。正因为这样,我在本文开始时引进了共有的规范,而不是共有的规则、假定和观点,尽管它们都是结成常规科学传统的源泉。我认为,规则来自规范,即使没有规则,规范仍然能够指导研究工作。

    ①关于一般微粒说,见玛丽·波瓦:《机械论哲学的建立》,《奥西雷斯》(Osiris)杂志,第

    X卷,(1952年),第412~541页。关于这种哲学对波义耳化学的作用,见T.S.库恩:《罗勃特·波义耳和十七世纪的结构化学》,《爱西斯》杂志,第

    XLIII卷(1952年),第 12~36页。