历史

第六章 科学的统一(1/2)

    --维特鲁威:《建筑》

    在大都,忽必烈曾下令

    建造一座宏伟的逍遥宫:

    圣河亚弗在那里流经

    深不可测的岩洞,

    直泻入不见阳光的大海中。

    --科尔里奇:《忽必烈汗》

    1.引言

    如果我们通观现代科学的各个领域,可以看到一种戏剧性的、令人惊异的进化、在各个完全不同的领域中出现了相似的概念和原理,虽然这些观念的类似性是各个领域独立发展的结果,而且个别领域的工作者几乎没意识到这种共同的趋势。因为,在科学的所有领域中都出现了整体原理,组织原理,实在的动态概念原理。我们还可以列举更多的共同特性,诸如对自然规律基本的统计特征和实在的内在矛盾性的认识。看来,要用概念结构描述实在,仅仅使用单一的构架是达不到目的的,而必须使用成对既对立的又互补的概念。这种对立互补概念在量子理论的互补原理(p.180)中得到了表达;互补性也可能以某种不同的形式适用于生物现象的描述(p.155)。另一个基本的洞见是,与经典物理学的连续性概念相反,基本事件具有非连续的性质、按照量子理论,实在的最终单位是非连续的,并且是不可再分的。生物学中与其相似的是突变论,按照突变论,进化不是以连续转变的方式,而是以非连续的跳跃方式进行的。量子论与突变论的出现不只是一种历史的巧合,后者与前者保持着密切的关系(pp.95,165f.),它们正好建立于同一年即1900年。也许,我们可以加上生理学中的全-无定律,这个定律也差不多是在同一时期提出的,按照这个原理,生理活动,比如肌内或感觉器官的活动,不是连续地增强的,而是以跳跃的方式增强的,因为随着刺激强度的增加,新的要素,期中的每一个达到其功能的最大值时才能发生作用。

    2.物理学

    经典物理学试图把所有自然过程分解为原子的活动,分解为按照力学定律、吸引与排斥的定律在空间运动的微粒。现代物理学不只是直接证实了原子的存在;它揭示了原子的结构,并完全攻克了放射性、元素嬗变和原子能释放等新领域。然而,正是这些发展推翻了机械论的观念。

    机械论物理学的第一准则也许是要把物理过程分解为可分离的局部事件。与此相反,现代物理学看来必须要有整体性概念。按照海森堡的不确定原理,不可能同时确定电子的位置和动量。要确定电子的位置,必须照亮电子;但这意味着光量子击中电子,由此引起电子动量的变化。因此,位置确定得越是精确,动量则越是不能精确地确定,反之亦然。由此得出以下的结论:第一,严格的决定论在微观物理学领域是不可能成立的(pp.163f.),因为测不准关系给所有测量所必需的同时确定设置了不可克服的限制。第二,根据海森堡关系,就物理学微观事件而言,测量仪器原则上不能与被测量的实体分开。这样,在微观物理学中出现了整体原理。事实上,整体原理在微观物理学中比在宏观物理学层次上具有更基本的意义(p.192)。因为,对于微观物理学来说,不只是这样的一个问题:为了认识整体,必须认识各个组分以及组分之间的关系;相反地,在基本事件的层次上,进一步的分解在原则上变得不可能,它们只能作为一个整体加以处理。

    第二,最有意义的是,在现代物理学中出现了组织原理。经典的定律从根本上说是关于无序的定律,而现代物理学和化学的中心问题是组织问题。正如波尔兹曼所证明的,因果关系朝破坏有序的方向起作用,因为经过一定的时间,热运动不断增加,起初存在的所有的有序无可挽回地受到破坏。但是,一个原子,比如说,一个汞原子,它由一个原子核和八十个行星般运动的电子构成,它保持着自己的组织;光谱线发射的系统,原子的化学性质等都依赖于这种组织;原子不管受到周围粒子热搅动的连续不断的撞击,仍保持着自己的组织。正如量子理论表明的,原子不顾热运动的干扰而保持其稳定性和它的组织,是以基本物理事件的非连续性为基础的。原子不能处于无论什么样的状态,而只能假定它处于具有不同量子条件的分立的状态。如果这些状态用数字1、2、3等表示,那么状态1是最小能量的基础状态。在这种状态中,原子正常地存在;2、3等是激发状态,如果得到必要的能量,原子会以跳跃的方式达到这种状态。由于这个原因,太弱的扰动是无效的,因而原子可以不顾热运动而在无限的时间内保持稳定。只有当温度增加时,它才通过量子跃迁的方式变成激发态。对于分子、晶体、固态、甚至基因,也可以作相应的考虑。基因是具有特定组织和高度稳定性的大分子。只有在比较罕见的情况下,比如由于量子的打击引起突变或由于热涨落引起自发的突变,会跃迁到新的稳态,由此发生遗传性的变异。这里就有物理学的量子论和生物学的突变论之间的联系。基因分子向新的稳态的转变,只能通过跳跃的方式发生,因为能量的转变不是以任何微小量的方式发生的,而是以量子化的方式发生的。从生物学上说,这为从一个亚种到另一个亚种的转变不是连续的,而是以跳迁的方式发生的现象,提供了解释(cf.p.95)。

    现代物理学的第三个基本变化,在于把刚性的结构解析为动态。经典物理学把原子看作像微型台球的固体。根据现代物理学的看法,它们是微小的行星般运动的系统,其中原子核像中心的太阳,它由带正电荷的粒子和无电荷的粒子(质子和中子)组成,负电子围绕它运行。同时,物惯表现为过程,表现为动态。质量与力的对立,物质与能量的对立,在日常生活和经典物理学中是明白无疑的,但在微观物理学层次上则消失了。电子不是微型的刚体;它是能量的集中,物质波或波包。由于这个原因,物质转变为能量,能量转变为物质,是可能的。伽马(Y)射线的量子,即高频率的X射线,可以转变为带负电和带正电的孪生对粒子,电子和正电子。反过来,物质也可以转变为辐射。经典的质量守恒原理和能量守恒原理统一为爱因斯坦综合的守恒定律。而且,在某些条件下,基本物理单位表现为粒子,而在另一些条件下表现为波动或波。根据玻尔的互补原理,粒子和波是对立的、但又是关于同一物理实在的必不可少的和互相补充的概念。

    整体、组织、动态——这些一般概念,可以说是与机械论的物理学世界观相对立的现代物理学世界观的特征。

    3.生物学

    近几十年来,生物学思想运动趋向于“机体论概念”。由于这个概念在很大程度上是潜意识的和无名的,它的意义甚至更加明显。这不是孤立的现象,而是我们的科学概念总变化的组成部分。

    我们已考察过物理学机械论观点在生物学中的影响。按照物理学机械论的观点,生物学的目标在于把生命现象分解为可孤立的部分和过程(pp.10f)。于是,有机体被看作是许多细胞的总和,有机体的功能被看作是许多细胞活动的总和。同样地,像物理事件被看作是受偶然性规律支配的那样,有机体的组织和功能被看作是随机突变和选择的产物。另一方面,这种观点符合经济活动的时尚和经济学理论。事实上,达尔文将马尔萨斯关于人口增长超过其资源的理论普遍化,并把它应用于整个生命界。所谓生物界中的生存斗争不是别的,而是工业时代开始时曼彻斯特学派鼓吹的自由竞争在生物学中的应用。生物学中的功利主义观念符合总的社会思想意识。生命的机器理论,完全是人们以技术控制无生命界而自豪,也把生物看作机器这样一种时代精神的表现。

    人们认识到机械论概念的局限性,最初导致了活力论。活力论假定有机体各个部分的聚集和机器-结构是受目的因控制的。随后,人们认识到机械论和活力论的观点都是不妥的,导致了机体论概念的产生。机体论概念试图将科学意义赋予整体性概念。我们同样可以在生物学、医学和心理学中看到这种共同的趋势。

    我们已详细地论述过现代生物学思想的基本概念及其对不同领域的影响。首先是整体性概念。我们不仅必须考虑有机体的各个部分和个别过程,而且必须考虑它们共同的相互作用和支配这些相互作用的规律。这些无论在有机体受扰动后的调节现象中,还是在有机体正常的活动中,都清楚地表现出来。其次是组织概念。生物界的基本特征在于它是巨大的等级体系,它从有机化合物分子经过自我增殖的生物单位,延伸到细胞和多细胞有机体,最后到生物群落。新的规律均在组织的每一层次上显示出来,而生物学研究的任务就在于逐渐地揭示这些规律。最后是动态概念。活结构不是存在,而是变易。它们是物质和能量不停流动的体现,物质和能量不停地流经有机体同时又构成有机体。动态概念构成了生物学许多领域中精确定律的基础,也提供了理解诸如等终局性那样的现象的基础,等终局性迄今仍被人们看作是不能用科学的术语解释的神秘现象。

    虽然近几十年来许多作者提出了类似的观点,但本作者可以断言,他从1926年起发展起来的机体论概念,可以说是第一个逻辑上表述一致的新观点,这一新观点可作为生物学的作业假说。这个概念产生的丰硕成果,可以在后面得出的许多结论中看到,而且由后来的研究所证实并被详尽阐述。那么,再次概述这些方面的发展,也许是有益的。

    许多科学家已接受了机体论观点,有趣的是,可以看到其中有些科学家来自对立的阵营。例如,生物化学家尼达姆早先曾严厉地批判过生物学中的整体概念,后来他采纳了机体论概念。正如尼达姆(1932年)所说,生物学理论的中心问题是组织问题。虽然J.S.霍尔丹(Haldane)考虑到对生物学问题的充分解释涉及到生命系统的组织问题,但冯·贝塔朗菲和伍杰的机体论概念表明,有必要研究生命系统的组织实际上究竟是什么。因而,组织不是一种解释问题,而是生物学中最迷人的和最困难的问题。承认这个事实,与活力论毫不相干。另一方面,在动物行为领域从事工作的阿尔费德斯(Alverdes)(1933年),起初坚决主张活力论观点,后来接受了机体论概念。阿尔弗德斯(1936年)、贝文克(1929年)、卡纳拉(Canella)(1939年)、格斯纳(Gessner)(1932年,1934年)、特里比诺(Tribino)(1946年)和昂格雷尔(Ungerer)(1941年)的著作,

    可以说是对机体论概念的深入介绍。对于机体论概念,比宁(1932年)、格罗斯(1930年)和M.哈特曼(Hartmann)(1937年)从机械论方面作了批判的论述,文茨尔(1938年)从活力论方面作了批判的论述,布罗伊勒(1931年)、伯卡姆普(Burkamp)(1930年,1936年,1938年)和林斯鲍尔(Lins-bauer)(1934年)从中间立场作了批判的论述。在贝文克(1944年)、比察里(Bizzari)(1936年)、布罗默(Brohmer)(1935年)、迪肯(Durken)(1937年)、冯·弗拉肯贝格(Fraken-berg)(1933年)、H.约尔丹(Jordan)(1932年)、O.苛勒(Kohler)(1930年)、尼达姆(1936年,1937年)、冯·内尔加德(1943年)、奥尔德考普(Oldekop)(1930年)、里特(Ritter)和贝利(Bailey)(1928年)、E.S.拉塞尔(Russell)(1931年)、扎佩尔(Sapper)(1930年)、昂格勒尔(Ungerer)(1941年)、韦莱(Wheeler)(1929年)、伍杰(1929年)、沃尔特里克(1940年)等人的著作中可以发现相似的观点,其中某些观点是由他们独立地提出的,另一些观点是在和我们的工作相互交流中提出的。物理学家薛定谔(1946年)也独立地得出了类似于机体论的概念,“生命问题——虽然它并不超脱迄今所知的物理规律——但它可能包含迄今未知的不同的物理规律。然而,一旦人们认识这些新的物理规律,这些规律会像已知的物理规律那样整合成为这门科学的组成部分。”米塔施(1935年,1936年,1938年)关于生物催化和关于自然界因果关系的等级体系的工作,也与机体论概念有密切的关系;阿尔弗德斯(1937年)的马堡学派关于动物行为的工作,H.约尔丹(1941年)关于生理学基本原理的论述,赫希(Hirsch)(1944年)关于动态组织学的观点,也是如此。在发育生理学领域,达尔魁(1941年)按照自己的看法表述了机体论概念。无需再作详细的讨论,我们可以注意到现代生物学的总趋势是符合机体论概念的,这个作业假说在生物学的所有领域中得到了应用。这里只能对本作者及其同事所作的应用以及与之密切相关的发展状况,作一个概述。

    关于活组织问题,本作者在1932年就表明它是未来的研究纲领:

    “有种看法认为,物理结构的等级体系应以蛋白质的胶态分子团为终点,超出这个限度,只能应用无序的定律(即溶液中的概率分布的定律,这个定律来源于热力学第二定律)或摩尔定律;因此,有机体或者可能是纯粹的‘混合物’,或者可能是刚性的‘机器’。这种看法似乎完全是任意的假设,它对遗留的实际的问题——有机体生命过程的有序性——毫无所知。相反地,从胶态分子团排列(其规律部分地为人所知)到非刚性程度和动态程度更高的有序状态(其规律尚未为人所知)即被称为原生质和细胞的‘活组织’,很可能有连续的过渡。当然,活组织不仅是‘非刚性’的,而且是‘动态’的。这里,‘组织’问题与‘稳态’问题联系了起来。”

    正像弗雷-维斯林介绍的,原生质的亚显微形态学在当时出乎意料的程度上遇到了这种挑战。蔡格(Zeiger)(1943年)证实了原生质组织的“动态”概念(p.34)是必需的。在我们早期工作中形成的关于细胞理论及其局限性的概念(1932年,cf.pp.38ff.),与赫泽拉关于“细胞间组织”(1941年)的有意义的工作是一致的。在更高的组织层次上,动态概念克服了结构与功能之间的明显对立,把有机体看作是以不同速度发生的诸过程的等级体系。这个概念是由冯·贝塔朗菲和本宁霍夫(1935年,1936年,1938年;cf.pp.134ff.)提出的。根据动态观点和机体论观点,对同源概念重新下了定义(冯·贝塔朗菲,1934年;见下卷)。冯·纳茨默尔(Natzmer)(1935年)对生物个体性的看法与我们的看法几乎在本义上是一致的。路格迈尔(Lugmayr)(1947年)根据托马斯主义哲学的观点讨论了这个问题。

    人们发现机体论生物学的观念,在生态学中也是有用的。在林学中,莱梅尔(1939年)认为森林是一个在个体的变化中保持其自身的生物群落,他根据这种森林的机体论概念,引出持存森林原理。这个有趣的例子表明,机体论概念不仅有理论价值,而且也能适用于重要的实际问题和经济问题。范泽洛(Vanselow)(1943年)也说明林学的现代概念与机体论生物学是一致的。H.韦贝尔(Weber)(1938年,1939年)根据机体论概念,对普通生物学体系中的环境(umwelt)概念下了定义。冯·于克斯屈尔(von

    Uexkull)在引用这个术语时,只强调了有机体与环境之间的关系即对感官-刺激作出反应这一面。因此,他的环境概念只限于感官生理学,但事实上这是一个伪心理学概念。可是,按照韦贝尔的看法,我们应当在更广泛的意义上给环境概念下定义。这个概念表示对有机体发生影响的整个系统。这个系统依赖于有机体的特定组织,同时,也使有机体的自我保存成为可能。因此,环境不仅包括能作为刺激而发生作用的东西,还包括有机体自我保存所必需的全部综合条件。另一方面,环境概念在人类活动领域中受到了限制。动物的环境依赖于它们的**组织。可是,在科学的演进中,出现了逐渐排除环境概念中的拟人化特征的情况,即环境观念中依赖于人类知觉器官特定组织的那些特质和范畴被不断排除(冯·贝塔朗菲,1937年)。这种观点类似于格伦(Gehlen)对于冯·于克斯屈尔所提倡的环境概念的批评;他也断言这个概念不适用于人类文化活动。本作者对人的独特性问题也曾作过讨论(1948年;见下卷)。

    开放系统理论在物理学、物理化学、生物能学和生理学领域引出了许多新的问题和新的见解(见pp.125ff,131ff,以及下卷)。普里高津和维亚梅(1946年)、普里高津(1947年)、赖纳(Reiner)和施皮格尔曼(1945年)、斯克拉贝尔(1947年)等人的工作,我们已经提到过了。德林格尔和韦茨(1942年)将开放系统理论应用于基本生物单位(病毒、基因),把这些基本生物单位看作是处于稳态中的单维晶体;冯·贝塔郎菲已提出了一个更为详细的模型概念(1944年,cf.p.30)。

    多特韦克(Dotterweich)(1940年)对“生物平衡”问题作了综合的研究,尽管他对这个概念的解释非常广泛,从而包括了多种性质的现象。因此,他的概念大部分仍是形式的。他区分了迄今所理解的“生物平衡”概念的三种应用:(1)形态学上“器官平衡定律”(乔弗鲁瓦·圣伊莱尔,歌德);(2)生物群落的平衡(埃舍里希[Es-cherich]、弗里德里希[Friederichs]、沃尔特里克[Woltereck」等);(3)作为动态平衡或稳态的有机体论的生理学概念(冯·贝塔朗菲)。这些概念中,最后一个概念看来是基本的。可以将“器官平衡”看作是有机体在其异速生长过程中达到的稳态(p.139)。可是,生物群落的平衡并不表现为物理、化学实体的稳态,而表现为超个体单位的更高层次上的稳态。在开放系统的一般运动学(有点相似于我们的“系统论”)和梯度原理的基础上,施皮格尔曼建立了形态发生中的竞争、调节、优势和确定的定量理论(1945年)。

    有机体作为开放系统的概念,导致了动态形态学(冯·贝塔朗菲,1941年),即把有机形态解释为有序的过程之流的结果。这使形态学和生理学的方法和观点的整合成为必要,并为发现新陈代谢、生长和形态发生的定量定律铺平了道路。本作者及其在该领域工作的团体对于这个问题的论述,前面已作了列举(pp136ff.);在下卷中,将作更详细的概述。克拉特(Klatt)(1949年)对动态形态学已作了重要的讨论。他最早(1921年)在形态学领域中应用定量方法,引进了现被称之为异速生长的定律,他评论了对有机形态进行定量分析的意义、成果和限度。

    关于近来的实验结果与从机体论观点推导出来的神经系统功能的概念之间的相符,已在前面指出了(p.121)。

    医学科学的发展与现代生物学的发展是非常相似的。微耳和的细胞病理学旨在将疾病分解为细胞所受的扰动。他拒绝诸如体质之类的概念,而体质概念在现代医学中再次变得十分重要,恰恰是因为它建立在有机体作为一个整体的概念的基础上,但微耳和却认为这是错误的。然而,现代医学显然是朝机体论观点的方向发展的;内分泌学或人的体质理论就是机体论医学的范例。

    事实上,机体论概念在医学领域中作为一种“解放的成就”而受到欢迎。按照冯·内尔加德(1943年)的看法,H.齐默尔曼(Zim-mermann)(1932年)可能是第一个认识到现代生物学概念对医学实践具有意义的人。正如他所说的,“由于医学主导观念的发展与理论生物学主导观念的发展之间有明显的一致,医学所取得的任何一点成就都可看作是具有历史意义的成就。”机体论概念似乎“变得与现代医学科学的主导观念和必要假说最接近。”齐默尔曼在后来的一篇论文(1935年)中根据机体论生物学批判了所谓“生物医学”。罗特舒(Rothschuh)(1936年)在对现代医学的各种理论倾向作比较性的概述时,驳斥了机械论、活力论和心理活力论的理论,称赞机体论概念是现代医学可靠的理论基础。克拉拉(Clara)(1940年)关于医学中整体性问题的表述是紧接着冯·贝塔朗菲(1937年)所作的陈述而提出的。当妇科专家塞茨(Seitz)(1939年)就生长、性和生殖的调整的生物学、生理学和医学问题,提出“生命过程(包括正常的和病理的)的整体论观点”,这个观点与机体论概念甚为接近。一般来说,我们的生物学概念与主要医学家如阿朔夫(Aschoff)、贝蒂、比尔(Bier)、布鲁格施(Brugsch)等人强调的概念是非常符合的。内尔加德(1943年)关于身体理疗的工作与机体论概念有着密切的关系。动态形态学概念与克雷奇默尔(Kretschmer)的马堡学派的康拉德(Conrad)(1941年)关于人类的体质类型的工作之间也有明显的一致,虽然这两条思路是完全独立地发展出来的。机体论概念对医学的影响特别值得注意,因为医学还有临床实践这一面,所以它是对生物学理论的最好检验。

    机体论概念在心理学领域中也得到了应用。蒂姆伯(Thumb)(1944年)概述了机体论概念对于心理学的意义,估价了动态平衡和稳态观念作为心理学领域模型概念的意义。人们在心理学领域中发现了相似于生物学领域的原理。尤其当人们就像根据动态形态学观点思考形态发生那样,从发育规律的观点沉思人类环境(umwelt)的建立问题时,生物学意义上的环境概念(冯·于克斯屈尔、韦贝尔)与认为这种概念不适用于人类的观点(格伦)之间的争论消失了。正如生物学中的动态和整体概念与心理学中的格式塔理论具有类似性,生物组织的等级体系与个性的阶层(罗特哈克尔[Rothacker」,1947年)有着对应性。机体论概念也应用于精神病学和社会学领域(伯罗[Burrow],1937年;赛泽[Syz」,1936年)。行为被看作是组织内张力的模式,对于精神疗法来说,它主张不应把神经病患者看作孤立的个体,而应视之为处于一定社会单位中的个体。同时,上面提到过的人类独特性(pp.184f.)的另一方面问题变得明显了。在动物王国中可以发现对抗与合作的倾向,但是,我们只是在人类行为中发现了憎恨、罪恶和社会的无政府状态。这些现象似乎与感情的倾向有关,而感情的倾向依附于这些语义的方式——形成概念与语言表达——正是这些遂使人类提升到所有其他动物之上的地位。

    机体论概念在哲学中也有许多应用,以下我们所知的有关应用就是对我们学说的发展。卡西尔(Cassirer)学派的拉森(Lassen)(1931年)论述了与机体论概念有关的物理学非因果性问题和目的论问题。费赖斯(Fries)(1936年)把机体论概念作为归纳的形而上学的基础。巴劳夫(Ballauff)(1940年,cf.以及1943年)对冯·贝塔朗菲的机体论概念和N、哈特曼(Hartmann)的分层(Schichtengesetze)学说作了综合。按照分层学说,可以把实在看作连续叠加的层次,每一层次有它自己的规律。巴劳夫根据等级秩序和稳态保持的原理采纳我们关于有机系统的定义,以机体论的方式(即持存于有机体中的唯有其特殊的有序规律)表征自主性,并且阐明了有机系统概念的哲学结论。

    我们已提到的等终局性的新概念,作为我们的理论在哲学上的重要推论,为迄今被人们认为是形而上学和活力论的定向性概念提供了物理基础。

    机体论概念的最终概括是一般系统论的创立(冯·贝塔朗菲,最早在1945年;见pp.199ff.以及下卷),一般系统论是精确的、数学化的本体论的基础,也是不同科学领域中一般概念的逻辑相应性的基础。

    因此,可以说,机体论概念在从生物学的特殊问题直到人类知识的一般问题的许多领域中被证明是富有成果的。这个概念的最令人信服的证据是,它已被应用于完全不同的领域,如物理学、物理化学、解剖学、胚胎学、生理学、林学、医学、心理学和哲学;并且使所有这些领域中的许多问题得到的阐明。

    4.心理学

    现代心理学的发展具有特殊的意义,因为正是在这个领域内第一次对整体性问题作了科学的探讨。正像生物学探讨躯体现象那样,传统心理学试图把精神生活分解为孤立的事件,即心理原子。例如,认为视觉是对应于视网膜单个细胞兴奋的基本感觉与大脑皮层视觉区相应的细胞的总和。但这种概念的不适应性不久就变得明显了,心理学因此而引用了控制的因素,如“统觉”,按照冯特(Wundt)的说法,统觉是一种可以与生物现象中活力因素的假设相比的解释。格式塔心理学试图克服这种二难困境:按照冯·爱伦费斯(von

    Ehrenfels)(1890年)的说法,可以把格式塔定义为心理的状态和事件,这些心理状态和事件所特有的性质是不能通过其各个组分的累加获得的(爱伦费斯第一准则)。例如,一幅感觉到的几何图案,不只是各种色点的总和;