历史

第四章 自然系统理论(1/2)

    创立扎实的知识综合和知识系统化的需求……将唤起一种迄今为止似乎只是作为一种脱离常轨而存在的创造能力——进行综合的创造能力。正如所有创造性努力所必然产生的,这必将意味着专门化。但是这一次,人们将构建整体方面的专门化。

    ——(奥尔特加·Y.加西特[Ortega

    Y Gasset」,《大学的使命》,普林斯顿,1944年,第91页)

    这里提出理论的目的是陈述那些适用于整个微观等级体系组织复杂现象的不变性。虽然自然系统理论的一些比较详细的和定量化的公式源源不断地从物理学家、生物学家、社会学家、经济学家和生态学家的工作室中脱颖而出,但是这些提出的理论中大多数只推荐专门对准焦点问题看的观点,因此,它们作为一般系统哲学的基础未必可靠。我宁愿提出我自已的理论,也不愿研究和总

    结这些现存的理论,这个理论可以清楚地描述虽然只是少数系统性质,但却可以肯定,这些系统性质中的每一个都适用于组成地球微观等级体系的组织复杂性现象的整个范围,尽管个别地看,在其最大的普遍性方面,这些性质也许显得无足轻重,然而,作为自然系统的性质,在综合方面,它们提出了一个描述自然系统的有意义的理论。因为人自身也是这样一种系统,而且他的环境和经验由其它的环境和经验所组成,所以我们就有了一个经过深思熟虑的扎根于没有偏见的一般系统论的一般系统哲学的立足点。

    首先陈述我们的自然系统理论,然后从公理方面及其经验应用的一些方面进行探讨。

    理论:R=f(α,β,γ,δ),这里α,β,γ,δ是具有联合函数R(“自然系统”)的独立变量。

    独立变量R=f(α)(系统的状态性质)。

    自然系统:整体性和秩序

    一个有序的整体是一个非加和系统,其中各种固定的力强加于若干恒定的约束,由此产生一个带有各种可计算的数学参数的结构。

    整体概念,与其孤立的各部分的特征相反,是这样定义系统性质的:整体具有它的各单个部分所不具有的特性。因此从这种意义上说,整体不是其各部分的简单迭加。(例如,一个原子不等于其单个组分粒子加在一起的总和;一个国家不等于组成立的个人之和,等等。)可是,这种主张没有隐含或包含神秘主义。传统上,整体经常被当作定性的和本质上不可测的实在,因为它们被认为“它们大于它们的各部分之和”这种概念是错误的,整体可以从数学上表述为不同于其各部分的性质和功能的简单之和。我们只要考虑一下下述基本思想,各部分的复合体能够以三种不同的方式进行计算:(1)计算各部分的数目;(2)考虑各部分所隶属的种类;(3)考虑各部分之间的关系。在(1)和(2)两种情形中,复合体可被理解为各孤立部分的总和。在这些情形下,复合体具有累加特征:只要把各部分的性质相加就足以获得整体的性质。这种整体不如通称“聚积体”或者“堆积体”较好,因为把各部分加入其中的这一事实并没有使它们在功能方面有什么不同——那就是说,各部分之间的相互关系没有成为它们的共同行为。一堆砖就是这样的一个例子。但是考虑一下别的什么东西,从一个原子到一个有机体或者一个社会:各个部分的特有关系就会产生各个部分所没有的(或者对各部分来说是无意义的)那些性质。从泡利不相容原理

    (这个原理对单个的电子不起作用),经过内环境稳定的自调节(这对于个别细胞和组织无意义),直到公正分配(同样,这对于社会的单个成员是没有意义的),都是这方面的一些例子。此外,还存在许多自然复合体,它们不是堆积物,而是合成物——不同于其各部分之和的别物。我们可以很容易地找到加和复合体和组织复合体这两方面的数学例子。

    我们的理由的值得注意之点是,非加和复合体的数学既适用于物理、化学和心理学系统,又适用于社会系统。这些系统构成有序整体——组织复合体,其中相互依存的元素表现出的规律性决定整体的功能行为。以后我将尝试论证实际情况的确如此。我这里只要强调:“有序整体”概念并不等于对“总体大于各部分之和”原则的神秘解释,它是自然科学、人类学和社会科学文献中可接受的和确实经常使用的一种概念。R=f(β)(系统控制论Ⅰ)“系统控制论”的定义

    在输入-输出功能分析与内部状态描述二者相互联系的任何叙述中,通过控制过程进入系统并导致其某些(或全部)现存参数变化的输入——和最后的输出结果——成了注意的焦点。这里的“控制论”是维纳为了表示“操舵术”或关于控制的科学而创造的术语。虽然现代工程的应用只限于用它来研究封闭系统中的各种流体,但它能被应用于较广泛的范围,比如研究输入和输出相互关联的系统以及它们的结构-动态结构(structural-dynamicstructure.)。正是在这个较广泛的意义上,“控制论”将被应用于这里的讨论,即作为系统控制论——借助于“系统”来理解和其环境(因而有了一个实际开放或潜在开放的环境)相关的有序整体。

    需要区别两种系统控制论。第一种和维纳的名字最直接地联系在一起:它研究以减少误差的负反馈方式来达到自稳控制。第二种:从马格诺(Maruyama)要求注意放大控制过程的误差(或“偏差”)——它依靠正反馈起作用(“第二种控制论”)——的重要性以来,它已受到了人们的关注。这两种形式的系统控制论给我们提供了一种定性的中性概念工具,用于评估各种过程。通过周期地、持续地和其环境进行能量或信息交换,这些过程能使有序整体系统保持一定的模式,并促使模式进化。“系统控制论Ⅰ”和“Ⅱ”的实例存在于原子过程(微观物理控制论),有机过程(生物控制论),社会过程(社会控制论)范围内,甚至存在于认知过程(精神控制论)领域。这些术语指的是控制流体的最一般的特征,这些控制流体或者导致在一个动态环境(稳定状态)中在一段时间内保持典型结构,或者由于来自环境的输入导致结构的渐进变异(进化)。在定性研究发散的自稳定和自组织过程中,使用一般控制论框架可以发现出现在定性发散变换中的不变性。如果使用有限内涵的特殊语言,这种不变性将会被掩盖起来。(因而使用上述关于特定控制论过程的新词,也许是无可非议的。)

    自然系统:适应性自稳

    如果一个系统完全被一些固定的力所控制,那么这些力所强加的恒定约束会造成一种不变的稳定状态。然而,如果在系统中还有一些不受约束的力和固定的力一起存在,那么系统就能通过存在于其中并作用于其上的力的相互作用而改进。系统中存在着某些固定的力就足以造成一种状态,当系统中对应于那些不受约束的力的所有流体消失时,这种状态可以在时间上持续下去(“稳态”)。系统中的任何波动将会产生力,使系统回到其稳定状态。扰动所引起的流体必定具有和扰动本身相同的符号。所以,流体趋向于减少扰动,而系统将建立并回复到它的静(或稳)态。如果固定的力依然存在,那么静态以其参量为特征(因为不受约束的力消失了)。如果固定的和不受约束的力都被消除了,这个系统就回到一种热力学平衡态。排除热力学平衡态下占优势的随机性,“有序整体”总是以固定力的存在为特征的。因此,由于其种种特点,有序整体总是自我稳定在稳态中或稳态周围。如果不受约束的力所引起的扰动未超过它们的自稳定临界值,那么它们势必会回到由它们的恒定约束所规定的持久状态。

    上面所述是对勒夏忒列原理的当代陈述,这个原理于1888年提出,讲的是化学平衡中的封闭系统。这一原理认为,“根据平衡因素之一的变化,每一个化学平衡系统经历着这样一个方向上的转变,即如果它已经自己产生,那么它将会导致与考虑中的因素的征兆相反的变化”。勒夏忒列原理被普里高津应用于开放系统,并由昂赛格《Onsager)、卡恰尔斯基和其他一些人在非平衡热力学中做了详尽的阐述。它以种种形式反复出现在生物学(坎农、贝塔朗菲、韦斯等人)、社会学(佩雷、帕森斯等人)、经济学(李嘉图、熊彼特)、政治理论(泰勒、卡普兰……)中,并且获得了米勒所表述的这样一种重要性:如果没有这种自动调节,任何具体的系统都不能够存在。

    各种系统中的“控制稳定性”——那就是说,通过系统内部变量的对等变换补偿环境中条件变化的自动调节力——在这里被表述为对作为有序整体的具体系统的一种适应形式。它也可以用韦斯早先提出的一个简单公式重新表述,用符号代表一般系统的种种特点:

    让我们把注意力集中于被推测为具有系统特性的某种复合体的任一特定部分(A),并且测量一给定时间内对那个部分的物理和化学参数平均值所有可能的偏移和其它涨落。让我们把这些误差的累加记录叫做A部分的变量(va);而且让我们对我们可能识别的系统的许多其它部分继续同样的过程,并且建立它们的变量vb、vc、vd、……vn。让我们同样测量我们能识别的总体复合体(S)的许多特征,并且确定它们的变量(Vs)。那么,如果整个集合的各种特征变量比它的组分变量之和明显地要少,这个复合体就是一个系统;或者写成一个公式:

    Vs<<∑(va+vb+vc……+vn+)

    与系统成分中更易变化的涨落比较而言,韦斯把系统的不变性,从总体上,看作为一个系统的最重要特点。这种系统的不变性是相互依存的各部分的有序整体的一般性质,它受到固定的内部约束和外部输入的扰动的控制。这类有序整体构成多种系统:在一定的扰动范围内,它们会回复到稳态,稳态的特征是其不变的内部约束参数。因为这类系统重新组织了它们的种种流体以缓冲,或者消除各种扰动(因而,和它们共同作用组分的大幅度变化相比,总复合体保持某种相对不变),所以它们是一些适应性的实体。这是系统的一种适应形式,但不是唯一的一种。一种更引人注目的涉及到各种固定力本身的重组的适应形式,将在下面讨论。R=f(γ)(系统控制论Ⅱ)

    自然系统:适应性自组织

    我们已经证明,有序整体——即具有能预测的固定力的各种系统——在其环境中出现扰动后趋于回复到稳定状态。我们同样可以证明,当受到环境中某个物理常量作用时,这种系统能够重组其固定力并获得其稳定状态的新参数。

    如果我们考虑阿什比的“自组织原则”并作某些修正的话,就能得出这个结论。后者涉及到用“有序稳定态”替代阿什比的自然系统“平衡态”。为了进行这种替代,阿什比的自组织原则可作如下解释。

    我们从一般自然系统走向有序稳定状态这一事实开始进行讨论。现在,自然系统各种状态的大多数是相对不稳定的。因此,如果系统从任何状态变成稳定状态,那么它就是从大多数状态变成少数状态,这样就进行了某种选择。在完全客观的意义上,它拒绝了某些状态(通过脱离它们来实现,并且通过与它们依附在一起,保留某些别的状态),并且保留了另外的某些状态(通过坚持某种状态来实现)。因此,由于每一个确定的自然系统都走向它的稳态,所以它的确进行了选择。由阿什比描述的选择不仅涉及那些规定受到扰动后的系统的原稳定态参数的重建,而且涉及新稳定态的渐进发展,这种新稳定态比原先的更能抗扰动。

    阿什比提出下述例子。假设一个计算机的存贮器里有阿拉伯数字0-9,它的动态规律是,阿拉伯数下成对连续相乘,而且积的右边数字将置换被采用的第一位数字。由于偶数乘以偶数得偶数,奇数乘以奇数得奇数,且偶数乘以奇数得偶数,这样,系统将朝着偶数“有选择地进化”。但是,由于在偶数中零是唯一抗拒改变的,所以作为运算次数的函数,系统将趋近到一种全零状态。

    阿什比得出结论,这是最一般的自组织的范例。这里存在着一个驱使系统向一种特殊状态(阿什比的“平衡态”)靠近的非常明确的算符(乘法运算和替换法则),它有选择地使系统进化到能最大限度地抗拒变化的平衡态。所以,产生自组织所必须的一切就是“带有输入的机器”(计算机+动态规律系统)应该被孤立。适应性自组织不可避免地要走向众所周知的生物和精神系统。“在任何孤立的系统中,生命和智力不可避免地要发展”。或者引用他更一般的结论:“遵循不变规律的每一独立确定的系统都会发展为适应于它们‘环境’的‘有机体’”。

    上述论断只要附带两点建议性修正就可适用于当前的命题:(1)它只限于自然(而非人工)系统;并且(2)算符不是驱使系统走向平衡态,而是走向稳定的、或准稳定的非平衡态。在自然系统中,抛弃平衡态概念代之以非平衡稳定态的慨念,其理由都是有说服力的:(1)平衡态不具有可以利用的能量,而最广泛的各种自然系统则具有;(2)平衡态是无记忆的,而自然系统行为大多取决于其过去的经历。总之,平衡系统是一种死系统——甚至比原子和分子还要“死”。因此,虽然一部机器也许会趋向它所喜欢的状态——平衡态,但自然系统却越向于越来越有组织的非平衡态。

    经过修正的阿什比原理表明,在任何充分独立的系统-环境范围内,系统把自己组织成为对于环境作用于它的那些力具有最大抗拒功能的系统。另外一些研究者已经表明,用一种任意的形式以及复杂的程度(即:在热力学上的最可能平衡地分布的任何事物)作为开始,系统响应来自环境的输入而变得复杂。这种“自然选择”把许多相对简单的系统引导到具有组织等级性的系统